

Studio di funzione

Jacopo Fiastri - Roma

Spett. Redazione, vi presento un gruppo di programmi che, sebbene concepiti ad uso degli studenti del 5º Liceo Scientifico e dei primi anni di Università nelle facoltà di Matematica, Ingegneria, ecc., sono di utilità assolutamente generale.

Data una funzione f(x), se ne possono calcolare: derivata di ordine 1, 2 e 3 in un

punto; asintoti orizzontali ed obliqui della f o delle sue prime derivate; punti di zero della f(x), di f'(x) o di f''(x); minimi (o massimi cambiando segno alla funzione) di f(x), di f'(x) e di f''(x) (per min f'(x) si ha un punto di flesso); esistenza e continuità in un punto della f o delle sue prime derivate (f è derivabile in un punto solo se la derivata è continua nel punto). Inoltre ho aggiunto una routine di "esplorazione" che presenta il valore della f(x), di f'(x) o di f''(x) in

una successione di punti ordinati che permette di individuare "intuitivamente" l'andamento della funzione, facilitando così l'uso degli altri programmi.

Vediamo ora come procedere:

1) Impostare sotto le LBL "FX", LBL F, LBL 00, al passo 219, un programma che calcola il valore della funzione da studiare f(x) nel punto x, la routine deve usare come input il numero posto in X e deve porre il risultato nello stesso registro X.

01+LBL 5	38 PROMPT	75 X(3Y	1 112 -	149 RTN	186 STO 86
02 CF 01	39 RCL 08	76 X<=82	113 X<=Y2	150+LBL 12	187 1 E-3
83 CF 02	40 /	77 GTO 96	114 STO 00	151 XEQ IND 05	188 ST+ 04
94 3	41 CHS	78+LBL 08	115 Rf -	152+LBL 13	189 -
95 GTO 00	42 "Y="	79 XEQ 07	116 RCL 02	153 TONE 9	190 XEG IND 05
96+LBL b	43 X≠87	88 X<=9?	117 X=Y?	154 CLA	191 X() 84
97 SF 01	44 ARCL X	81 GTO 88	118 GTG 09	155 ARCL 01	192 XEQ IND 05
98 CF 82	45 X≠8?	82 RCL 61	119 X>Y?	156 "H="	193 ST+ 84
89 1	46 *FX *	83 STO 03	120 SF 66	157 ARCL X	194 RCL 86
18 GTC 98	47 RCL 08	84 RCL 00	121 R†	158 AVIEW	195 XEQ IND 05
11+LBL c	48 ST+ X	85 ST+ X	122 FS? 00	159 RTN	196 ST- 04
12 CF 01	49 *	86 X>8?	123 ST+ 03	160+LBL C	197 ST- 04
13 SF 02	50 RCL 02	87 ST- 03	124 FC?C 88	161 STO 03	198 RCL 04
14 2	51 X<>Y	88 X<0?	125 ST- 91	162 STO 01	199 1 E-6
15+LBL 00	52 -	89 ST- 01	126 RCL 01	163 1 E-5	200 /
16 STO 05	53 X>02	90+LBL 09	127 RCL 03	164 ST+ 01	201 RTN
17 RTH	54 "F+"	91 RCL 01	128 X>Y?	165 -	202+LBL D
18•LBL A	55 X≠82	92 RCL 03	129 X<>Y	166 CLA	203+LBL 01
19 "N.S."	56 ARCL X	93 -	130 STO 03	167 XEQ 05	204 STO 07
20 STO 08	57 TONE 9	94 .382	131 RDN	168 RCL 93	205 1 E-5
21 3	58 PROMPT	95 *	132 STO 01	169 XE0 05	206 ST+ 97
22 STG 00	59+LBL B	96 RND	133 GTO 11	170 RCL 01	287 -
23+LBL 83	60 XEG 05	97 STO 88	134+LBL 85	171+LBL 95	203 XE0 00
24 RCL 00	61+LBL 84	98 ST+ 03	135 STO 00	172 XEQ IND 05	209 X() 07
25 RCL 08	62 XEQ 07	99 ST- 01	136 RDH	173 ARCL X	210 XEQ 00
26 *	63 X=87	100+LBL 11	137 STO 01	174 AVIEW	211 RCL 07
27 XEQ IND 05	64 GTO 13	101 RCL 01	138 XEQ IND 05	175 "H="	212 -
28 RND	65 *	102 RCL 03	139 STO 03	176 RTN	213 2 E-5
29 STO IND 00	66 X>0?	103 X=Y?	140 RTN	177+LBL e	214 /
30 DSE 00	67 GTO 04	104 GTO 12	141+LBL 97	178 XE0 05	215 RTH
31 GTO 93	68 -4	105 XEQ IND 05	142 RCL 00	179+LBL 14	216*LBL "FX"
32 RCL 02	69 ST/ 98	196 STO 02	143 ST+ 01	188 XEQ 13	217+LBL F
33 -	70 GTO 04	107 RCL 01	144 RCL 81	181 XEQ 07	218+LBL 00
34 RCL 02	71+LBL E	108 XEQ IND 65	145 XEQ IND 05	182 GTO 14	219 END
35 RCL 03	72 XEQ 05	109 RCL 80	146 RND	183+LBL d	1107 (TAX)
36 -	73•LBL 06	110 RCL 01	147 X() 03	184+LBL 82	
37 X≠Y?	74 XEQ 07	111 RCL 03	148 RCL 93	185 STO 84	

2) Inizializzazione: qualora si vogliano esaminare le caratteristiche della f(x): XEQ a; della f'(x): XEQ b; della f''(x): XEQ c.

3) Asintoti: impostare un'approssimazione di $+\infty$ o $-\infty$, a seconda che si intenda calcolare l'asintoto a destra o a sinistra (generalmente vanno bene numeri compresi tra + 10 e + 10000), quindi XEO A. I risultati potranno essere di 4 tipi:

a) OUT OF RANGE: in tal caso riprovate con un "∞" più piccolo (in valore

assoluto).

b) DATA ERROR: la funzione non ha asintoti, in quanto f(x) non esiste da un certo x in poi.

c) N.S. (nessuna soluzione): la funzione non ha asintoti.

d) Y = mX + q: l'asintoto c'è, e questa è

la sua espressione analitica.

4) Radici: impostare un punto di partenza x, indi ENTER↑, quindi un passo △, infine XEQ B. Il programma valuterà la funzione successivamente nei punti x, $x + \wedge$, $x+2\triangle$, ecc., finché essa non cambia segno. Ouindi troverà la radice presentandola nella forma x = 0 (leggi f(x) = 0).

5) Minimi: impostare x, ENTER↑, △, come al punto 4, quindi XEQ E (estremi); risultato: x = f(x), dove x è un punto di minimo relativo. Per i massimi aggiungere CHS alla fine del programma che avete impostato alla LBL F per il calcolo della funzione, bisogna però fare attenzione perché i risultati vengono forniti col segno

6) Derivata in un punto x: impostare x quindi XEQ D, il risultato è f'(x). N.B. Questa è l'unica routine (a parte F) a non essere influenzata dall'inizializzazione.

7) Derivata II e III in un punto x: dopo aver inizializzato (XEQ a per f"(x), XEQ b per f"(x)), impostare x, quindi XEQ d, il risultato è f"(x) o f"(x).

8) Continuità in un punto x: impostare

x, quindi XEO C; il risultato è $f(x-\varepsilon) = f(x)$ = $f(x + \varepsilon)$. Se e solo se i tre valori verificano l'uguaglianza, fè continua in x. Qualora appaia il messaggio DATA ERROR, significa che la funzione non è definita in almeno uno dei tre punti considerati, e che quindi non è continua in x.

9) Esplorazione: impostare x, ENTER 1, A, come al punto 4), quindi XEQ e: saranno visualizzati in sequenza i risultati.

 $x + \triangle = f(x + \triangle)$

 $x+2 \wedge = f(x+2 \wedge)$

il programma si arresterà quando verrà premuto R/S, o quando apparirà un messaggio di OUT OF RANGE o DATA ER-ROR. Qualora si voglia rallentare il tempo di visualizzazione di ogni dato, si potranno inserire delle PSE o addirittura uno STOP al passo 181 NOTE. La precisione dei risultati forniti dalle routine A, B, E, C, e, è stabilita dal FIX corrente. La scelta degli incrementi usati nelle LBL D e LBL d è adatta a funzioni di tipo "scolastico": in caso abbiate a che fare con funzioni aventi coefficienti della x molto grandi (o piccoli), sarà opportuno aumentare (o diminuire) i suddetti incrementi (passi 187, 199, 205, 213).

Il calcolatore, lo si è sempre detto, è un ignorante, ma un ignorante molto veloce e magari anche paziente. Come farebbe un bravo studente per calcolare le radici di una funzione? Si metterebbe chino su un foglio di carta a lavorare con le regolette sacre, per arrivare dritto alla soluzione. La nostra 41C non sa inchinarsi sul foglio, ma è veloce e paziente, per cui preferisce seguire un'altra strada: quella del calcolo numerico. Nel Math-Pac della 41C esiste una funzione per il calcolo delle radici che, data una certa funzione, ne calcola per tentativi i punti di nullo con un metodo molto simile alla battaglia navale: tenta con dei valori e con successive iterazioni si accosta sempre di più al risultato, fino a raggiungere, con sufficiente precisione, il valore cercato.

twar

Il metodo usato da Jacopo Fiastri per il calcolo delle radici di una funzione è anch'esso di tipo numerico come la funzione "SOLVE" del Math-Pac, ma concettualmente molto più semplice; la differenza sta nel fatto che mentre la funzione "SOLVE" tenta con valori in un certo qual modo "ragionati", approssimandosi molto velocemente alla soluzione, il programma proposto calcola f(x) ad intervalli regolari finché il risultato cambia di segno: a quel punto, una radice, lì deve stare...

La validità di questo programma, a detta dell'autore, sta nel fatto che, dato il metodo usato, difficilmente l'elaborazione viene fuorviata da funzioni strane che invece spesso e volentieri mettono in crisi "SOLVE"; per contro, il fatto che il metodo di Jacopo richieda, come dati, un punto di partenza e un intervallo di campionamento della funzione, presuppone una parziale conoscenza della funzione con cui si ha a che fare.

Come specificato dall'autore, la precisione dei risultati dipende dal FIX usato; bisogna però fare attenzione poiché, per esempio, un FIX2 nel calcolo di una radice stabilisce che il programma debba trovare un punto di nullo che verrà considerato tale con l'approssimazione di un centesimo, ma il valore della radice fornito in corrispondenza di tale punto, non è detto che sia anch'esso esatto alla seconda cifra decimale; tale inconveniente comunque, è sufficientemente superato usando sempre un FIX molto alto.

Ultima precisazione, volendo calcolare semplicemente f(x) dato il valore x, è sufficiente premere XEQ F.

HELIS

SERVIZI PER L'INFORMATICA

Via Montasio 28 - ROMA - Tel. 06/8922756

- CORSI DI PROGRAMMAZIONE BASIC
- CORSI DI PROGRAMMAZIONE ASSEMBLER

- COMMODORE PLUS 4
- COMMODORE 64
- COMMODORE C 16
- PERSONAL COMPUTER CBM
- PERIFERICHE COMMODORE
- ACCESSORI
- PRODUZIONE SOFTWARE
- ASSISTENZA SOFTWARE
- ASSISTENZA TECNICA
- LIBRI TECNICI

Computers della quarta generazione fornito completo di Software gestionale (cont. gen. - magazz. - fatt.) - Prezzo eccezionale!

	Sono interessato a.
	Diventare Distributore
	Ricevere un vostro incaricato per informazioni
	Ricevere documentazione
Ditt	a
	neCognome
Via	n
CAF	Città
Tele	efono MC/12-8

Software

Sistema operativo

MC/12-84

CP/M-86

(opzionale)

BASIC PASCAL

FORTRAN

Protocolli - SNA 3270 (SDLC),

RJE - BSC 3270

Computer

Micropro

Memoria

centrale

Tipo 16-bit 8 Mhz

8086

128 Kb

Databus Clock

- RAM standard

Controllo

di parità Interfacce RS-232

I/O Parallela

(centronics)

Penna ottica Hard disk

- Mouse - Floppy disk 1

Controllori - Floppy disk

(8" + 51/4") I Numero massimo di drives

Opzioni

Coprocessore aritmetico 8087

Espansione memoria centrale

896 Kb

Tastiera

Tastiera - Numero dei tasti Caratteri di buffer 8

Pad numerico con doppio

e triplo zero Tasto hard copy

Tasti funzione

- Tasti funzione

calcolatrice

Memoria di massa

Floppy disk

Numero di drives 2 × 51/4"

Capacità totale 1.6 Mb formattata

Tempo di accesso

da traccia a traccia 3 msec. Velocità di trasfe-

rimento dati

250 Kb/sec.

Hard disk

Capacità totale formattata

10 + 40 Mb Back-up Floppy disk

Winchester

800 Kb

removibile

Tempo di accesso

da traccia a traccia 3 msec.

Velocità di

trasferimento dati 5 Mb/sec.

Monitor

Formati (selezionabili da

risoluzione

 -80×25 -64×31

- 40×25

Grafica a bassa

- 160 × 72 pixels Grafica ad alta

risoluzione (opzionale mo-

nocromatico e - 786 × 288 pixels colore)

Grafica ad alta risoluzione

(opzionale

solo monocromatico)

- 786 × 576 Colori Set di caratteri

selezionabili da software - 11 Attributi video - reverse

lampeggio

doppia intensit;
sottolineato

DIVISIONE ELETTRONICA DELLA

METALPLEX S.p.A.

Via Torre della Catena, 185 82100 Benevento - Italy telef. 0824 - 21680-24168 TLW 721226 METAL I